Although boron (B) is considered the most deficient micronutrient in the world after zinc, dynamics of B use in plants and soils have continued to perplex farmers, agronomists and researchers for decades.
The objective of a recently published study conducted by University of Illinois plant physiologist Dr. Fred Below and recent doctoral graduates Dr. Ross Bender and Dr. Jason Haegele was to identify which secondary macronutrients and micronutrients demand attention in a new era of soybean production.
Even with the increased focus on micronutrients and their importance to crop health and yields, basing a solid nutrient management plan on macronutrients is still critical. While macronutrients and micronutrients certainly work best together to create a balanced approach to crop nutrition, the key difference between them is the amount needed for proper plant growth.
Boron is a micronutrient critical to the growth and health of all crops. It is a component of plant cell walls and reproductive structures. Boron can be found in soil solution, adsorbed to soil surfaces, organic matter, and is part of soil mineralogy. Boron is a mobile nutrient, meaning that it is prone to movement within the soil.
One of the micronutrients that is essential for crop health also happens to be one of the most deficient in the majority of fields: boron.
Raising a productive crop depends greatly on the nutrients a plant is able to access during its life cycle. Many factors influence the availability of those nutrients, including soil pH. For instance, as soil pH increases, the availability of phosphorus (P), zinc (Zn) and iron (Fe) decreases. Although variety selection can help manage iron deficiency in soybeans, fertilizer application is still needed to address the P and Zn deficiencies prevalent in high-pH soils.
In farming, little things can add up to make a big difference. This is certainly the case when it comes to balanced crop nutrition.
As yield levels increase, so does the demand for nutrients not often considered as standard practice. This means that a high-yield system requires more attention be paid to micronutrients. In fact, is it possible that we are pushing the limits of our soil as we push yields to the next level.
Rapid adoption of rootworm-resistant corn hybrids in the past five years has helped many farmers take corn yields to the next level. While corn varieties with insect resistance traits have eased insect control, it's important to remember that the investment in high-tech seed must be paired with other state-of-the-art agronomic practices, including a strong soil fertility program and balanced crop nutrition.
The ‘Golden Triangle’ in north-central Montana is called that for its bountiful wheat harvests. Chris Barge looks at the near-perfect moisture conditions this past fall and winter, sees the know-how of the growers in his area, and foresees an exceptional year for winter wheat in the Golden Triangle.
Dr. Mike McLaughlin, an expert on phosphorus, potassium and micronutrients, recently was named the recipient of the 2015 IFA Norman Borlaug Award. He has conducted soil science and fertility research on five continents: Africa, Australia, Asia, and North and South America.
Manganese (Mn) is an essential plant mineral nutrient, playing a key role in several physiological processes, particularly photosynthesis.